Context
Basic properties
1.1 Initial conditions and resolution
1.2 Radiative cooling and heating
1.3 Star formation
1.4 Feedback from massive stars
1.5 MBHs and AGN
1.5.1 MBH formation, growth and dynamics
1.5.2 MBH spin evolution
1.5.3 Radio and quasar modes of AGN feedback
1.6 Identification of halos and galaxies
References
[1] : “The formation of disc galaxies in a ΛCDM universe”, mnras, pp. 1391-1408, 2011.
[2] : “The mass function of dense molecular cores and the origin of the IMF”, aap, pp. L17-L21, 2007.
[3] : “How runaway stars boost galactic outflows”, mnras, 2020.
[4] : “From filamentary clouds to prestellar cores to the stellar IMF: Initial highlights from the Herschel Gould Belt Survey”, aap, pp. L102, 2010.
[5] : “The origin and implications of dark matter anisotropic cosmic infall on ̃L* haloes”, mnras, pp. 376-398, 2004.
[6] : “Maximum spin of black holes driving jets”, mnras, pp. 1302-1313, 2009.
[7] : “Outflows Driven by Quasars in High-Redshift Galaxies with Radiation Hydrodynamics”, mnras, 2016.
[8] : “Electromagnetic extraction of energy from Kerr black holes”, MNRAS, pp. 433-456, 1977.
[9] : “Transition to the Radiative Phase in Supernova Remnants”, apj, pp. 342-354, 1998.
[10] : “Systematic variation of the stellar initial mass function in early-type galaxies”, nat, pp. 485-488, 2012.
[11] : “The Role of Stellar Feedback in the Formation of Galaxies”, apj, pp. 292-309, 2009.
[12] : “Galactic Stellar and Substellar Initial Mass Function”, pasp, pp. 763-795, 2003.
[13] : The Initial Mass Function: From Salpeter 1955 to 2005. 2005.
[14] : “The Evolution of Supernova Remnants. Spherically Symmetric Models”, apj, pp. 501-516, 1974.
[15] : “New developments in understanding the HR diagram”, araa, pp. 235-285, 1992.
[16] : “Dynamics of Radiative Supernova Remnants”, apj, pp. 252, 1988.
[17] : “Magnetic Fields in Molecular Clouds”, araa, pp. 29-63, 2012.
[18] : “Heating and Ionization of HI Regions”, araa, pp. 375, 1972.
[19] : “Cosmic ray feedback from supernovae in dwarf galaxies”, arXiv e-prints, pp. arXiv:2003.09900, 2020.
[20] : “Jet-regulated cooling catastrophe”, mnras, pp. 985-1001, 2010.
[21] : “Self-regulated growth of supermassive black holes by a dual jet-heating active galactic nucleus feedback mechanism: methods, tests and implications for cosmological simulations”, mnras, pp. 2662-2683, 2012.
[22] : “Dancing in the dark: galactic properties trace spin swings along the cosmic web”, mnras, pp. 1453-1468, 2014.
[23] : “Black hole evolution - II. Spinning black holes in a supernova-driven turbulent interstellar medium”, mnras, pp. 2333-2346, 2014.
[24] : “The Star Formation Rate of Turbulent Magnetized Clouds: Comparing Theory, Simulations, and Observations”, apj, pp. 156, 2012.
[25] : “A detailed study of feedback from a massive star”, mnras, pp. 3248-3264, 2015.
[26] : “The momentum budget of clustered supernova feedback in a 3D, magnetized medium”, mnras, pp. 3647-3658, 2019.
[27] : “Radiative Transfer in a Clumpy Universe. II. The Ultraviolet Extragalactic Background”, apj, pp. 20-+, 1996.
[28] : “The Millennium Arecibo 21 Centimeter Absorption-Line Survey. IV. Statistics of Magnetic Field, Column Density, and Turbulence”, apj, pp. 773-793, 2005.
[29] : “Analytical Star Formation Rate from Gravoturbulent Fragmentation”, apjl, pp. L29, 2011.
[30] : “Self-regulated star formation in galaxies via momentum input from massive stars”, mnras, pp. 950-973, 2011.
[31] : “Mutual influence of supernovae and molecular clouds”, aap, pp. A95, 2015.
[32] : “A hypernova model for the supernova associated with the γ-ray burst of 25 April 1998”, nat, pp. 672-674, 1998.
[33] : “Superbubbles in the Multiphase ISM and the Loading of Galactic Winds”, apj, pp. 25, 2017.
[34] : “Towards simulating star formation in turbulent high-z galaxies with mechanical supernova feedback”, mnras, pp. 2900-2921, 2015.
[35] : “Escape Fraction of Ionizing Photons during Reionization: Effects due to Supernova Feedback and Runaway OB Stars”, apj, pp. 121, 2014.
[36] : “Impact of Lyman alpha pressure on metal-poor dwarf galaxies”, mnras, pp. 4617-4635, 2018.
[37] : “Feedback-regulated star formation and escape of LyC photons from mini-haloes during reionization”, mnras, pp. 4826-4846, 2017.
[38] : “Aligning spinning black holes and accretion discs”, mnras, pp. 49-56, 2005.
[39] : “Galactic Chemical Evolution: Carbon through Zinc”, apj, pp. 1145-1171, 2006.
[40] : “Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation”, apjs, pp. 18-+, 2011.
[41] : “A General Theory of Turbulence-regulated Star Formation, from Spirals to Ultraluminous Infrared Galaxies”, apj, pp. 250-268, 2005.
[42] : “Massive black hole and gas dynamics in galaxy nuclei mergers - I. Numerical implementation”, mnras, pp. 1765-1774, 2015.
[43] : “IMF&ndashMetallicity: A Tight Local Relation Revealed by the CALIFA Survey”, apjl, pp. L31, 2015.
[44] : “Efficiencies of Low-Mass Star and Star Cluster Formation”, apj, pp. 364-378, 2000.
[45] : “General relativistic magnetohydrodynamic simulations of magnetically choked accretion flows around black holes”, mnras, pp. 3083-3117, 2012.
[46] : “Nucleosynthesis yields of core-collapse supernovae and hypernovae, and galactic chemical evolution”, nphysa, pp. 424-458, 2006.
[47] : “Cosmological simulations of the same spiral galaxy: the impact of baryonic physics”, arXiv e-prints, pp. arXiv:2004.06008, 2020.
[48] : “Dynamical Friction in a Gaseous Medium”, ApJ, pp. 252-258, 1999.
[49] : “The Star Formation Rate of Supersonic Magnetohydrodynamic Turbulence”, apj, pp. 40, 2011.
[50] : “The inner structure of ΛCDM haloes - I. A numerical convergence study”, mnras, pp. 14-34, 2003.
[51] : “Final spin from the coalescence of two black holes”, prd, pp. 044002, 2008.
[52] : “Extended Lyα emission from cold accretion streams”, mnras, pp. 344-366, 2012.
[53] : “A scheme for radiation pressure and photon diffusion with the M1 closure in RAMSES-RT”, mnras, pp. 4380-4403, 2015.
[54] : “A systematic look at the effects of radiative feedback on disc galaxy formation”, mnras, pp. 2837-2853, 2014.
[55] : “Cosmic ray driven outflows in global galaxy disc models”, mnras, pp. 3312-3330, 2014.
[56] : “Black holes in binary systems. Observational appearance.”, aap, pp. 337-355, 1973.
[57] : “Lyman α radiation hydrodynamics of galactic winds before cosmic reionization”, mnras, pp. 2963-2978, 2017.
[58] : “Cooling functions for low-density astrophysical plasmas”, apjs, pp. 253-327, 1993.
[59] : “Mass distribution in galaxy clusters: the role of Active Galactic Nuclei feedback”, mnras, pp. 195-208, 2011.
[60] : “Cosmological hydrodynamics with adaptive mesh refinement. A new high resolution code called RAMSES”, aap, pp. 337-364, 2002.
[61] : “Energy Input and Mass Redistribution by Supernovae in the Interstellar Medium”, apj, pp. 95-119, 1998.
[62] : Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer-Verlag, 1999.
[63] : “Fluctuating feedback-regulated escape fraction of ionizing radiation in low-mass, high-redshift galaxies”, mnras, pp. 224-239, 2017.
[64] : “The Obelisk simulation: galaxies contribute more than AGN to HI reionization of protoclusters”, arXiv e-prints, pp. arXiv:2002.04045, 2020.
[65] : “The Initial Mass Function of Early-Type Galaxies”, apj, pp. 1195-1202, 2010.
[66] : “Galactic winds driven by cosmic ray streaming”, mnras, pp. 2374-2396, 2012.
[67] : “Black hole mergers from dwarf to massive galaxies with the NewHorizon and Horizon-AGN simulations”, arXiv e-prints, pp. arXiv:2005.04902, 2020.